<strike id="yu4of"><address id="yu4of"></address></strike>
    1. <span id="yu4of"></span>
    2. 設為首頁
      加入收藏
      會員服務
      本站首頁 成長在線 熱點話題 教子有方 快樂書吧 資源分享 教育交流 教育故事 學習方法
      會員題庫 青春期教育 名家博覽 影視共享 心理教育 理財教育 國外教育 網上教育 關于我們
      會員登錄
      用戶名:
      密  碼:
      新用戶注冊  忘記密碼?
       
      欄目導航 網站首頁>>資源分享
      中考幾何題證明思路總結
      發表時間:2011-04-26 08:41:38   文章來源:新教育網       瀏覽次數:2375

       
              中考幾何題證明思路總結
       
          幾何證明題重點考察的是學生的邏輯思維能力,能通過嚴密的"因為"、"所以"邏輯將條件一步步轉化為所要證明的結論。這類題目出法相當靈活,不像代數計算類題目容易總結出固定題型的固定解法,而更看重的是對重要模型的總結、常見思路的總結。所以本文對中考中最常出現的若干結論做了一個較為全面的思路總結。

      一、證明兩線段相等
        1.兩全等三角形中對應邊相等。
        2.同一三角形中等角對等邊。
        3.等腰三角形頂角的平分線或底邊的高平分底邊。
        4.平行四邊形的對邊或對角線被交點分成的兩段相等。
        5.直角三角形斜邊的中點到三頂點距離相等。
        6.線段垂直平分線上任意一點到線段兩段距離相等。
        7.角平分線上任一點到角的兩邊距離相等。
        8.過三角形一邊的中點且平行于第三邊的直線分第二邊所成的線段相等。
        9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
         10.圓外一點引圓的兩條切線的切線長相等或圓內垂直于直徑的弦被直徑分成的兩段相等。
         11.兩前項(或兩后項)相等的比例式中的兩后項(或兩前項)相等。
         12.兩圓的內(外)公切線的長相等。
         13.等于同一線段的兩條線段相等。

      二、證明兩角相等
        1.兩全等三角形的對應角相等。
        2.同一三角形中等邊對等角。
        3.等腰三角形中,底邊上的中線(或高)平分頂角。
        4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
        5.同角(或等角)的余角(或補角)相等。
        6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。
        7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
        8.相似三角形的對應角相等。
        9.圓的內接四邊形的外角等于內對角。10.等于同一角的兩個角相等

      三、證明兩直線平行
         1.垂直于同一直線的各直線平行。
         2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
         3.平行四邊形的對邊平行。
         4.三角形的中位線平行于第三邊。
         5.梯形的中位線平行于兩底。
         6.平行于同一直線的兩直線平行。
           7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行于第三邊。

        
      四、證明兩直線互相垂直
        1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。
        2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。
        3.在一個三角形中,若有兩個角互余,則第三個角是直角。
        4.鄰補角的平分線互相垂直。
        5.一條直線垂直于平行線中的一條,則必垂直于另一條。
        6.兩條直線相交成直角則兩直線垂直。
        7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
        8.利用勾股定理的逆定理。
        9.利用菱形的對角線互相垂直。
        10.在圓中平分弦(或弧)的直徑垂直于弦。
        11.利用半圓上的圓周角是直角。

      五、證明線段的和、差、倍、分
        1.作兩條線段的和,證明與第三條線段相等。
          2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。
        3.延長短線段為其二倍,再證明它與較長的線段相等。
        4.取長線段的中點,再證其一半等于短線段。
        5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。

      六、證明角的和、差、倍、分
        1.作兩個角的和,證明與第三角相等。
        2.作兩個角的差,證明余下部分等于第三角。
        3.利用角平分線的定義。
        4.三角形的一個外角等于和它不相鄰的兩個內角的和。

      七、證明兩線段不等
        1.同一三角形中,大角對大邊。
        2.垂線段最短。
        3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
        4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
        5.同圓或等圓中,弧大弦大,弦心距小。
        6.全量大于它的任何一部分。

      八、證明兩角不等
        1.同一三角形中,大邊對大角。
        2.三角形的外角大于和它不相鄰的任一內角。
        3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
        4.同圓或等圓中,弧大則圓周角、圓心角大。
        5.全量大于它的任何一部分。

       
      九、證明比例式或等積式
         1.利用相似三角形對應線段成比例。
         2.利用內外角平分線定理。
         3.平行線截線段成比例。
         4.直角三角形中的比例中項定理即射影定理。
         5.與圓有關的比例定理--相交弦定理、切割線定理及其推論。
         6.利用比利式或等積式化得。
        以上九項是中考幾何證明題中最常出現的內容,只要掌握了對應的方法,再根據題目中的條件進行合理選擇,攻克難題不再是夢想!
       
      ------------ 相 關 內 容----------
      ------------ 相 關 評 論----------
              該文章目前沒有評論  
          查看評論
      打印本頁   關閉窗口

      黑龍江新教育網   客戶服務熱線:0451--89679659   QQ問答:200910955 黑ICP備06008913

      如果您對我們有任何意見或建議請發送至xjywang@163.com 或 hljczx@126.com

       

      香蕉视频在线观看视频